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Animals across vertebrate taxa form social communities and often exist as
fission–fusion groups. Central place foragers (CPF) may form groups from
which they will predictably disperse to forage, either individually or in
smaller groups, before returning to fuse with the larger group. However,
the function and stability of social associations in predatory fish acting as
CPFs is unknown, as individuals do not need to return to a shelter yet
show fidelity to core areas. Using dynamic social networks generated
from acoustic tracking data, we document spatially structured sociality in
CPF grey reef sharks at a Pacific Ocean atoll. We show that sharks form
stable social groups over multiyear periods, with some dyadic associations
consistent for up to 4 years. Groups primarily formed during the day,
increasing in size throughout the morning before sharks dispersed from
the reef at night. Our simulations suggest that multiple individuals sharing
a central place and using social information while foraging (i.e. local
enhancement) will outperform non-CPF social foragers. We show multiyear
social stability in sharks and suggest that social foraging with information
transfer could provide a generalizable mechanism for the emergence of
sociality with group central place foraging.
1. Introduction
Gregarious animals face a constant trade-off regarding the costs and benefits
associated with group living [1]. This trade-off can be heavily influenced by
reproductive strategy, competition, the distribution and quality of food or pre-
dators in space, and by processes that facilitate collective decision-making [2–4].
In most cases, animal groups will exhibit fission–fusion dynamics, where indi-
viduals split from (fission) and re-join (fusion) other group members [5].
Fission–fusion dynamics can contribute to or dictate group sizes and patterns
of assortativity among group members [5,6]. The extent of fission–fusion
dynamics in animal social groups are likely related to spatial and temporal
variability in the environment, as well as the strength of social associations
between individuals and their energetic state [6]. One important aspect of
fission–fusion societies is the stability of associations between group members,
which will determine the persistence of social communities [7]. Surprisingly,
multiyear social stability has only been measured in a few avian and
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mammalian species with fission–fusion dynamics, including
swallows, bats and hyenas [7–10].

Central place foragers (CPF) may refuge in groups and
will often show fission–fusion dynamics over short temporal
scales, with animals making excursions individually or in
smaller groups to/from the larger group at the central place
[7]. For example, seals and seabirds reside in groups or colo-
nies on land but head offshore to forage in much smaller
groups (e.g. [11–13]). In most cases, the central place is the
location of a nest, shelter or haul-out site which explains loy-
alty and fidelity to the central place. Sociality in refuging CPF
is often thought to be driven by reproduction, but social fora-
ging and information sharing may also be important [14–16].
Social information sharing in a foraging context can include
local enhancement (where animals can detect other individ-
uals foraging and can simultaneously forage and observe
conspecifics, [14]), recruitment (an individual ‘recruits’
others to a patch, with foraging success increasing with
group size, i.e. the recruitment hypothesis, [14]) and public
information (where uninformed individuals follow informed
individuals to prey patches, [17,18]). The transmission of
social information has been proposed as being responsible
for driving the evolution and maintenance of coloniality
(information centre hypothesis), or simple aggregations of
social foragers [17,19].

Models predict that the use of social information increases
foraging success in gregarious animals, but only if prey
patches are ephemerally distributed, unpredictable, and
have short residence times [14,20]. These models all assume
that central place foraging is a prerequisite of the social
system, which is a reasonable assumption for animals that
must return to a nest or shelter [14]. However, some large
marine predators such as sharks are CPF but have no obvious
need to return to a central place [21,22]. While information
sharing may lead to the development of animal aggregations,
the advantage of CPF itself in a social foraging context has
not been explored [19]. A central place may allow individuals
or subgroups to find each other and ‘fuse’ with the larger
group, which will help maintain social associations over
diel or seasonal timescales [6]. Social associations between
individuals can then potentially increase foraging success
via social information sharing [23].

Tropical reef sharks may only use small proportions of
available reef habitat and show multiyear fidelity or resi-
dency, returning to the same ‘central place’ over diel, tidal
or seasonal timescales [21,22,24,25]. Some sharks will form
social associations under both laboratory and field conditions
and are likely capable of social learning [26–29]. Within a CPF
context, they likely display fission–fusion dynamics, often
forming groups during the day and potentially dispersing
in small groups (or individually) at night to forage
[21,22,30]. Mating and reproduction in reef sharks is seasonal,
which influences patterns of movement, but residency on the
reef can occur extensively throughout the year [24,25]. The
function of sociality and central place foraging in these ani-
mals with potential diel fission–fusion dynamics are
unknown. While most reef sharks are more active at night,
they will also hunt during the day within their central
place, potentially with multiple other individuals [22,31].
Hence, the benefits of local enhancement and social associ-
ations may persist day and night (to varying degrees), and
we may expect multiyear social stability between dyadic
pairs if social foraging is beneficial.
Grey reef sharks (Carcharhinus amblyrhynchos) are CPF
that can show high residency to coral reefs but are also
capable of longer range dispersal [22,24]. They can form day-
time aggregations but disperse more widely at night when
they are more active, although they will forage opportunisti-
cally during the day [22]. At Palmyra Atoll, in the Pacific
Ocean, 80% of grey reef shark diet is estimated to be pelagic
prey, and sharks have been seen feeding on offshore fish
schools during the day ([32], electronic supplementary
material, S1). Hence, prey patches are likely to be ephemeral
and unpredictable in distribution, and sharks should benefit
from social foraging with local enhancement. If central place
foraging represents a mechanism for maintaining social
associations in groups with diel fission–fusion dynamics
and increases foraging success via social information sharing,
then we would predict that (i) sharks form social commu-
nities assorted by patterns of space use, (ii) group size
should increase throughout the day as individuals (or sub
groups) return to the central place, (iii) social associations
between community members should be stable over multi-
year periods and (iv) groups of individuals using social
information to forage (local enhancement) and sharing a cen-
tral place will outperform non-CPF social foragers in
computer simulations. We test these predictions with a popu-
lation of grey reef sharks at Palmyra Atoll, using a
combination of acoustic telemetry, biologgers, dynamic
social networks and individual-based models.
2. Methods
(a) Study population and location
Palmyra Atoll (5°540 N 162°050 W) is located at the northern end of
the Line Island chain, in the Central Pacific Ocean, and has been
a US Federal Wildlife refuge since 2001, with only a research
station on the island. Consequently, the atoll has large numbers
of upper level predators, including grey reef sharks (Carcharhinus
amblyrhynchos), with approximately 8000 grey reef sharks distrib-
uted heterogeneously around the forereef, with average densities
of 21 sharks km−2 [33].

(b) Quantifying movements and community assignment
Grey reef sharks were caught on hook and line and had a
uniquely coded V16 (69 kHz, semi-randomized delay 60–180 s,
Vemco Ltd, Nova Scotia) acoustic transmitter surgically
implanted into their body cavity. Individual animals (n = 41)
were detected and tracked across a network of 65 VR2W acoustic
receivers, which were attached to the reef and retrieved and
downloaded annually. Receivers that were overlapping in their
detection ranges (specifically in the SW of the atoll) were reduced
in number to avoid detections being recorded multiple times
simultaneously, a prerequisite for the mixture model analysis
(see below). This resulted in the exclusion of 18 receivers but
did not reduce the total area under acoustic surveillance. Recei-
ver detection range varied between forereef and backreef
habitats but was approximately 300 m at forereef sites (where
grey reef sharks spend most of their time, [22,25]).

Weighted, undirected movement networks were constructed
from the departure and arrival profile of the acoustic data, with
receivers treated as nodes and movements between receivers as
edges in a movement network [34]. Prior to quantifying social
behaviour we wanted to understand how tagged individuals
were organized based on their space use. Therefore, ‘commu-
nities’ were derived from the collective movement network
across all individuals using the Fast-Greedy algorithm,
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implemented in the R package igraph, revealing statistically
significant clusters of movement [35–37]. The extent of the move-
ments made by individuals in different communities across the
whole atoll is shown in electronic supplementary material, S2.
Community modularity within the movement network was
high (Q = 0.589), suggestive of area restricted movements, and
resulted in the formation of five distinct movement communities.
Note that movement communities do not consist of individual
sharks, but rather receivers that showed significantly higher
movements within than between locations, despite occasional
visits to many other receivers, supporting our case for social
rather than spatial drivers of network structure (electronic sup-
plementary material, S2). We then calculated a residency index
(RI) for each individual across each location before assigning
individual sharks to movement communities based on their
most resident receiver location (i.e. the receiver with the highest
RI). RI for each individual per location can be defined as

RIi ¼ Dh

Dal
� 100,

where Dh is the number of hours detected at a given location/
receiver and Dal, the hours at liberty in the array as a whole.
Thus, a location where an individual spends all of its time at lib-
erty is assigned a 1 and none of its time at liberty a 0. Finally, as a
metric of space use, we calculated 50% bivariate normal kernel
utilization distributions (UDs) for each tagged individual
within each movement community with greater than 100 detec-
tions, at a minimum of two unique receiver locations (n = 34),
in the package adehabitatHR in R.

(c) Dynamic social networks
We produced dynamic social networks using a ‘gambit of the
group’ approach, where animals co-occurring in time and space
are assumed to represent social associations after controlling for
individual spatial preferences [38]. Shark social networks were
inferred directly from the detection data streamusing theGaussian
mixture modelling approach, GMMEvents [39,40]. Clusters of
detections, produced by visits of multiple individuals to the
same place at the same time, varied temporally to reflect the vari-
ation expected in the temporal distribution of animal aggregations
and were determined using a variational Bayesian mixture model.
From these clusters, associations were assigned to an adjacency
matrix. Randomization of the individual-by-location bipartite
graph, a procedure built in to the GMMEvents model, excludes
random associations attributable to purely spatial drivers of aggre-
gation, leaving only significant associations to populate the
adjacency matrix [40]. Importantly, this constrained the randomiz-
ation procedure by the detection frequency of individuals and the
number of clustering events in which they occurred.

Networks were constructed in this way for each of the 4 years
of tracking data separately and tested for weighted assortative
mixing ðrwd Þ by spatial community membership for each year
using the ‘assortment.discrete()’ function in the R package ‘assortnet’
[41]. Each annual network was then tested for significant assort-
ment by spatial community and sex against 10 000 networks in
which interactions were randomized. Constraining the number
of individuals per community and the number of associations
measured that particular year, edge weights were randomly
assigned and rwd calculated for each permutation. The observed
assortativity coefficient was then compared to the posterior distri-
bution from the null model. We tested for social stability between
years using Mantel tests reflecting the correlation in strength
of dyadic relationships year on year when individuals were
present across 2 consecutive years (1&2, 2&3, 3&4) and finally
for those dyads that remained at liberty for the duration of the
study (years 1&4). There were far fewer detections at night [22]
hence the majority of social associations described are for
daytime periods.
(d) Changes in group size
To determine how the number of tagged sharks visiting the central
place varied temporally, we modelled the change in the number of
sharks detected throughout the day at core receivers. We per-
formed this analysis for the two communities with large
numbers of tagged sharks (the blue and red communities, figure 1),
and for 1 year (2012–2013) to reduce computation times. We deter-
mined the effect of hour of day on the number of sharks detected
(i.e. group size), using a Poisson generalized linear mixed model
(GLMM) with an AR(1) (first-order auto-regressive) process to
account for serial correlation, using the mgcv package [42] in
R. Model fit was assessed by examining residual diagnostic
plots, and Akaike’s information criterion (AIC) was used to
assess model performance against a null model (intercept only),
with improved model fit indicated by a minimum ΔAIC value > 3.

To estimate minimum group sizes, we deployed animal-
borne camera tags on two grey reef sharks caught off the SW
region of the atoll in July 2013. Sharks had DVL400 video loggers
(Little Leonardo, Japan) attached to the dorsal fin which record at
640 × 480 pixels at 30 frames s−1 and recording duration of 11 h
[22]. Cameras were embedded in copolymer floats along with
VHF (ATS) and SPOT satellite (Wildlife Computers) transmitters.
A time release mechanism caused tags to pop-off 48–72 h later,
where they would float to the surface and could be recovered
via the VHF and SPOT transmitters. Cameras were programmed
to turn on the day after capture at 7.00–8.30, to avoid the period
of stress associated with capture and night-time periods. For each
30 min segment we produced a conservative estimate of the
minimum number of sharks in a group ensuring that individuals
could not be counted twice (i.e. sharks in frame or seen sequen-
tially while swimming in a straight line), including the
individual carrying the camera (i.e. minimum size = 1).

(e) Individual-based models
In order to investigate potential determinants and subsequent
benefits to both sociality and central place foraging in reef
sharks, we developed two-dimensional individual-based models
(IBMs) to examine a range of scenarios that may have influenced
the evolution of these behavioural strategies. All models were
constructed in the individual-based multi-agent modelling
environment Netlogo 5.5 [43], and the basic parameters of these
models were previously described [25].

In brief, in all model contexts outlined below, starting con-
ditions comprised 100 simulated individual ‘sharks’ that moved
and foraged within a simple environment consisting of a fixed
number of prey patches (100 or 200 depending on the specific
simulation set) randomly distributed across an unbounded torus.
Prey patches moved using random walks and rare long-range
movement jumps, but also responded to foraging predators by
increasing their probability of making longer range movements.
Sharks lost energy during each movement step but gained
energy if they successfully captured prey. Upon detecting prey
patches, sharks swam to the patch and switched to area restricted
movements. Undiscovered prey patches were only detectable at
short distances of 0.3 unit radius (i.e. private information). How-
ever, following discovery and commencement of feeding by a
shark, such discovered patches became visible to other individuals
at a fourfold greater distance (i.e. social information). One hundred
simulations were run for each combination of model parameters
(number of prey patches, energetic value of prey patches), with
each simulation run for 4000 time steps. The initial model included
two types of individuals: (i) ‘lone’ foragers that are only able to use
private information and (ii) ‘social’ foragers that are able to detect
prey using both private and social information, whichmimics pas-
sive social information transfer including visual and chemical cues
in the water.

We then assumed all sharks were social foragers to examine
whether there is any additional benefit to being a CPF, as opposed
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Figure 1. Spatial and social assortment. (a) Palmyra Atoll US National Wildlife Refuge (red diamond) in the Central Pacific Ocean. (b) Space use measured as the
50% UD of sharks assigned to their respective communities, which were defined using community detection of movement networks in addition to residency be-
haviour (colours reflect communities in c). (c) Social networks and the distribution of weighted assortativity coefficients ðrwd Þ for 10,000 random networks (boxes)
and observed networks (red circles) across 4 years of shark telemetry data. Each node in the network represents an individual shark, with clusters showing closely
associated dyadic pairs. Networks were all significantly, positively assorted by community, represented as different coloured nodes. No assortment is illustrated by
blue dashed line. ( p < 0.05*, p < 0.01** and p < 0.001***). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201063

4

to moving freely throughout model space, under varying levels of
prey patch predictability. Thus, in these simulations, a varyingpro-
portion (20, 50 or 80%) were CPF (central place), returning to a
fixed spatial location at every 500th time step, with the rest starting
in random positions and moving continuously through model
space throughout each simulation run (wanderer). All simulations
had three fixed locations positioned based on draws from a
random number generator. These three fixed locations remained
the same for all simulations within a model set (i.e. central
places were fixed but prey patches and ‘wanderer’ starting
locations changed with each simulation). Simulations were run
at three different levels of prey patch predictability i.e. ‘high stab-
ility’ level (5% chance at each time step of prey patches
relocating to another random position in model space),‘medium
stability’ (25% chance of a long-range prey patch movement) and
‘low stability’ (50% chance of movement at each time step). Such
variation in prey patch stability simulates an increasing depen-
dence on pelagic as opposed to reef-dwelling prey, that are less
predictable in time and space. Full model details can be found in
electronic supplementary material, S3.
3. Results
We tracked the movements of 41 individual grey reef sharks
over 13 800 accumulative tracking days (27 female, 12 male,
two unknown, total length: 142 ± 18 cm). Tagged sharks
were assigned to five distinct movement communities,
based on similarity of individual movement networks
(network modularity, Q = 0.589). Thus, individuals were
organized into groups that predominantly only used small,
sub-sections of the available reef. Community members had
50% utilization distributions ranging in area from less than
1 to 7.53 km2 (mean ± s.e., 1.26 ± 0.32 km2, figure 1b).
Although movements of individuals between areas were lim-
ited, there was some spatial overlap between movement
communities, suggesting that subsequent social patterns
were not simply artefacts of animals having restricted and
non-overlapping home ranges (particularly as spatial prefer-
ences were also controlled for in our inference models; see
Methods, electronic supplementary material, S2).

(a) Dynamic social networks
Controlling for spatial preferences, themixturemodel retrieved
a total of 972 significant social clustering events (Y1 = 209; Y2 =
227; Y3 = 277; Y4 = 259). Calculating a weighted assortativity
coefficient for each annual network revealed significant social
assortment by spatial community membership (rwd : Y1 =
0.204; Y2 = 0.129; Y3 = 0.176; Y4 = 0.130) when tested against
a null model of 10 000 random networks (figure 1c). However,
therewas no evidence for assortment based on sex (rwd (SE): Y1:
−0.074 (0.065), Y2: 0.129 (0.015), Y3: 0.177 (0.025), Y4: −0.043
(0.042)). Mantel tests revealed that there was a strong corre-
lation in the dyadic association strength between pairs for
years 1&2 (n = 29, Mantel r = 0.74, CI = 0.13–0.30, p < 0.001),
2&3 (n = 35, Mantel r = 0.85, CI = 0.13–0.29, p < 0.001), 3&4
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Figure 2. Diel period predicts changes in group size within the two largest communities. (a) Number of acoustically tagged sharks detected at core receivers
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female grey reef sharks within community 2. (Online version in colour.)
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(n = 31,Mantel r = 0.78, CI = 0.13–0.27, p < 0.001) and finally for
the duration of the study for years 1&4 (n = 22, Mantel r = 0.76,
CI = 0.16–0.35, p < 0.001).

(b) Changes in group size
The number of tagged sharks increased throughout the morn-
ing, for both communities (blue and red), peaking about 15.00
(GLMM R2 = 0.18, 0.10; F = 244.9, 111.9, p < 0.001, community
2, community 4, respectively; figure 2a). The number of
tagged sharks detected then decreased, reaching a minimum
by 20.00–21.00 before starting to increase at 05.00–06.00
(figure 2a). Footage from camera tags deployed on two
sharks showed that group size typically varied between two
and 14 individuals, with group size increasing throughout
the morning and peaking in the afternoon (figure 2c, electronic
supplementary material, video S4). Close following behaviour,
where individuals were approximately less than 1 m from a
conspecific, was commonly observed (electronic supplemen-
tary material, S4). It is likely that detection range of receivers
will be reduced at night due to increased noise on the reef,
which may influence our ability to detect individuals. How-
ever, the more gradual increase in shark numbers throughout
the early morning as well camera footage still suggests diel
changes in group size are genuine.

(c) Individual-based models
Our first IBMs showed that individuals using only private
information to locate resources (loners) have much lower
fitness than those using social and private information (elec-
tronic supplementary material, S5). Under all simulated
scenarios of starting ratios of prey quality (energetic reward)
and patch density, the proportion of ‘loner’ individuals rapidly
declined typically to extinction, unless energetic rewards were
extremely high (electronic supplementary material, S5). Our
second series of models (private and social info/some CPFs,
others wanderers) showed that regardless of prey quality,
patch density or the starting ratio of wanderers to CPFs, in all
modelling scenarios CPFs had much greater survival times
(figure 3, electronic supplementary material, S3 and S5).
When simulations were run with less predictable spatial stab-
ility of prey patches, CPFs always had longer survival times
than wandering foragers regardless of patch density or quality
(figure 3c–f ). However, the difference in survival time was
greatest at higher patch densities and quality (figure 3,
electronic supplementary material, S3 and S5).
4. Discussion
Grey reef sharks form spatially assorted social communities,
with dyadic associations that can last multiple years. These
stable associations persist despite sharks displaying diel fis-
sion–fusion dynamics, with individuals generally fusing
within a larger group throughout the day. These results, com-
binedwith our simulations, suggest that CPFmay facilitate the
maintenance of fission–fusion groups, and improve foraging
success via social information sharing. As such, sharks can dis-
play a degree of social complexity traditionally associatedmore
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Figure 3. Strategy and survivorship modelling. Survival time of simulated sharks behaving either as central place foragers (CPF) or wanderers (do not use a central
place) under different levels of food patch stability (a,b: 5% instability, c,d: 25% instability, e,f: 50% instability). Regardless of prey abundance (a,c,e: 100 prey
patches, b,d,f: 200 prey patches), or the starting ratio between the two foraging strategies, under all conditions CPF individuals survive for longer durations, and only
CPF successfully survive for the full duration of model time under more stable conditions. Once prey density is sufficiently stable and/or high, there is no variation in
likelihood of survival of CPF. (Online version in colour.)
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with mammals and birds. Unlike other social CPFs which
refuge in groups (e.g. birds, bats), we can rule out reproductive
explanations for sharks as they do not display any parental
care, which further highlights the potential importance of
information sharing in driving the formation of social groups.

Grey reef sharks only use small regions of the available
reef habitat and show low rates of movement to adjacent
regions [25]. Reduced movement between neighbouring com-
munities has been hypothesized in both seabirds and sharks
to arise through density-dependent intraspecific competition
in combination with sharing of social information between
group members [11,25]. Here, we show that sharks also
form social communities with associations assorted by pat-
terns of space use, with social structure persisiting for
multiple years. Although some individuals moved between
the communities defined by the movement networks, their
associations with adjacent community members were weak
or random. Hence social structure was not purely due to indi-
viduals never encountering those from adjacent communities.
Similar spatial assortativity of social communities has also
been seen in blacktip reef sharks off French Polynesia [28].
Our dynamic social network approach also showed that
these dyadic associations are temporally stable, signifying
that the same individuals were associating with one another
over multiple years. While our data only spans a maximum
of 4 years, such associations have the potential to last for
much longer. Spatial assortment of social communities is
relatively common in animals of higher cognitive abilities,
including birds, bats, dolphins and seals (e.g. [8,9,44–46]).
However, rarely is multiyear social stability detected in
wild animal populations, with some examples from birds
and mammals [8–10]. Unlike bats and birds, shark social
communities are not seasonal, but instead occur year-round
with long-term residency to central place locations [22,25].
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We also show that sharks form fission–fussion groups over
diel time frames with group size increasing throughout the
morning as individuals return from night-time forays. Both
telemetry and camera tag data suggests that sharks leave indi-
vidually or in smaller groups during night-time periods, before
fusing with larger groups during the day. Similarly, juvenile
blacktip sharks develop larger aggregations during the day
than they do at night [30]. However, individual sharks were
rarely detected over consecutive days suggesting that they
spend multi-day periods offshore or in other regions, before
returning. The long-term social associations persist despite
sharks exhibiting fission–fusion dynamics, within the confines
of community membership, a pattern also documented in
bats [8].

The central place itself may facilititate fusion of individuals
or smaller groups, enabling the persistence of long-term social
structure, often an issue for fission–fusion groups [6]. Here, we
provide evidence that social information sharing, likely within
a foraging context, can potentially explain social community
formation for CPFs. Models of local enhancement and/or
public information sharing suggest increased foraging success
and benefits of group foraging, but only if prey patches
are ephemerally distributed, unpredictable and short lived
[2,14,17,20]. Competition will counteract the advantages of
larger group sizes, although this effect may be reduced if
patch quality is highly variable and if travel times to patches
are short [3,47]. Empirical support for these predictions can
be found in bats and seabirdswhere social foraging is generally
only seen in species or individuals foraging on ephemeral
prey [13,48]. Our series of IBMs supplement these studies
by suggesting that for sharks using social information (local
enhancement), central place foraging, with multiple individ-
uals using the same central place, provides a significant
advantage over random wandering within a home range.
These advantages persist under scenarios of both more and
less predictable prey patches. For predictable prey patches,
central place foraging improves foraging outcomes, because
the forager can potentially learn the location of patches while
using only memory requirements and path integration abilities
[49]. This advantagewould increase in situations with less pre-
dictable prey, as CPF enables individuals to begin foraging in
closer proximity to each other, boosting local enhancement
opportunities and social grouping mechanisms in general.
Ourmodels do not incorporate any public information sharing
(e.g. following among individuals or orienting in the direction
of returning sharks) that may also occur and further benefit the
foraging success of CPF individuals [11,20]. We also do not
include density-dependent effects related to group size, such
as increased competition.

As grey reef sharks forage on pelagic schooling fish, they
will likely benefit from social information sharing, similar to
predictions from seabird models [20,32]. However, unlike
other CPFs, grey reef sharks will at times, forage during the
day on the reef within the central place, where prey (reef
fishes) are likely more predictable [22]. Hence, social associ-
ations should still exist even during daytime aggregations,
and our model would still suggest a potential advantage of
CPF behaviour over wandering. Gregariousness will likely
vary spatio-temporally, with seabirds for example, showing
highest levels at foraging patches but weaker levels while com-
muting [7,13].Wewould predict that social associations in grey
reef sharksmay be strongest at the central place, and at offshore
foraging patches, but weaker during commutes to patches.
However, we only measure associations when sharks were
detected on receivers which will be primarilly in reef environ-
ments. White sharks hunting seals were also thought to remain
within proximity of other sharks while located off a California
seal colony, presumably due to local enhancement benefits
although this is likely only seasonal [50].

We measure associations via a ‘gambit of the group’
approach, and only consider time periods when sharks are
within range of acoustic receivers. The distance between indi-
viduals at receivers could be a few hundred metres, although
random associations should be removed by our analysis due
to the long-time frame over which they are measured. While
we were only tracking a small proportion of the grey reef
shark population, densities per area of the forereef are rela-
tively low [33] and our camera deployments suggest group
sizes of approximately 14 individuals. Furthermore, sharks at
geographic locations were generally all caught and tagged at
the same time and depth, hence we are confident that we
likely caught and tagged individuals within groups (for
example sharks carrying camera tags actually filmed each
other over different days). However, future studies should
aim to quantify the distance between individuals and measure
associations continuously over the diel cycle andwhen animals
are offshore (e.g. [50]). Despite these issues, we show that shark
communities display temporally stable, complex social struc-
tures comparable to seabirds and potentially even some
mammals. Sharks may provide a model system to study the
role of information sharing in animal gregariousness in gen-
eral, as breeding related mechanisms are likely of lower
importance (over annual timescales, although breeding will
be of importance seasonally, [24]). Social information transfer
could be a key foraging mechanism and by itself sufficient to
drive central place foraging behaviour with group refuging,
in animals that do not require the use of a nest or shelter, includ-
ing other marine predators (e.g. carangid fishes [51]). Social
information links individual behaviour to population- and
community-level dynamics and can contribute to patterns of
spatial separation between communities as well as changing
the frequency and strength of species interactions [11,52].
While the importance of social information in colonial birds
andmammals is nowwell established, we show that these con-
cepts likely also apply to some species of shark. Tantalizingly,
our analyses suggest a process that may be much more
widespread than originally thought in free-ranging, marine
animals that behave as CPF with no obvious reason for
doing so.
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